9th ISCA Speech Synthesis Workshop e September 13 — 15, 2016 e Sunnyvale, CA, USA

Contextual Representation using Recurrent Neural Network Hidden State for
Statistical Parametric Speech Synthesis

Sivanand Achanta, Rambabu Banoth, Ayushi Pandey, Anandaswarup Vadapalli,
and Suryakanth V Gangashetty

Speech and Vision Laboratory, IIIT, Hyderabad, India.

{sivanand.a, rambabu.b, ayushi.pandey, anandaswarup.vadapalli}@research.iiit.ac.in

svg@iiit.ac.in

Abstract

In this paper, we propose to use hidden state vector ob-
tained from recurrent neural network (RNN) as a con-
text vector representation for deep neural network (DNN)
based statistical parametric speech synthesis. While in a
typical DNN based system, there is a hierarchy of text
features from phone level to utterance level, they are usu-
ally in 1-hot-k encoded representation. Our hypothesis is
that, supplementing the conventional text features with
a continuous frame-level acoustically guided represen-
tation would improve the acoustic modeling. The hid-
den state from an RNN trained to predict acoustic fea-
tures is used as the additional contextual information.
A dataset consisting of 2 Indian languages (Telugu and
Hindi) from Blizzard challenge 2015 was used in our
experiments. Both the subjective listening tests and the
objective scores indicate that the proposed approach per-
forms significantly better than the baseline DNN system.
Index Terms: speech synthesis, recurrent neural net-
work, deep neural network

1. Introduction

Text-to-speech synthesis using statistical parametric ap-
proach has received a great deal of attention in the last
decade [1]. This trend can be observed in Blizzard chal-
lenge results in recent years [2], where statistical para-
metric speech synthesis systems (SPSS) have outper-
formed unit-selection counterparts. However, the natu-
ralness of SPSS based systems needs to be improved. In
[1], authors have identified the causes leading to the un-
natural sounding in SPSS as: (1) Acoustic modeling (2)
Vocoding and (3) Parameter generation. In this paper, we
attempt to improve the acoustic modeling in a deep neural
network (DNN) based SPSS.

DNNs have been used for acoustic modeling in
both automatic speech recognition and SPSS [3] [4].
They have shown consistent improvements over hidden
Markov model based approach. While the success of
DNNss for acoustic modeling has been encouraging, there
are several aspects that are not particularly suited for

modeling speech parameters in synthesis domain. We
highlight three aspects that may need to be addressed in
a DNN based SPSS framework.

* Smooth parameter generation
» Context representation

* Avoid over-smoothing

The first problem has been addressed in the recent
years either by the use of recurrent neural networks
(RNNSs) [5] [6] or by modifying the cost function to in-
clude the dynamic constraints during training [7]. The
latter two problems received much lesser attention and
has been attempted be very few [8] [9]. We focus on the
second problem in this paper.

In a typical DNN/RNN based SPSS systems, text fea-
tures at the input are composed of: (1) categorical (eg.
penta-phone identities, identity of the vowel in the cur-
rent syllable, etc,), (2) numerical features (# of syllabels
in word, # words in phrase and so on), and (3) dura-
tion features like frame index, duration of phone etc,.
The categorical features are usually 1-hot-k encoded rep-
resentations. However a more suitable form of repre-
sentation would be to use continuous valued representa-
tions as described in [10]. Learning embeddings for the
phones/words/utterances as in [9] can also be considered
as one alternate approach. In this paper, we train an RNN
for predicting acoustic features and append the hidden-
state of the RNN as the acoustically guided contextual
representation for the conventional text-features. One ad-
vantage of this method over the embeddings is that these
are adaptive for every new test utterance while embed-
dings once learnt remain fixed.

The paper is organized as follows: Section 2 relates
the current work to previous works in the literature. In
Section 3 a detailed description of the RNN architecture
is given. The proposed method along with experiments
and results is presented in Sections 4 and 5 respectively.
The conclusions of the paper are drawn in Section 6 and
possible directions for future work are given in Section 7.
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2. Relation to Prior Work

In [11] [12], the authors have proposed the use of bottle-
neck features for improving DNN based speech synthe-
sis. However our approach differs in some principal
ways. Both the bottleneck and synthesis networks are
DNNs in [11], while we use RNN for Context Represen-
tation (CR) learning network. Using DNN for CR net-
work introduces two parameters (1) the bottleneck layer
size, and (2) number of frames to be stacked. Extensive
experiments have been reported in [11] to determine these
two parameters. However, using a RNN hidden state as
additional contextual representation, the problem of opti-
mization of these hyper-parameters can be circumvented
as will be shown in the later sections. The recurrent hid-
den state memorizes the past and hence avoids the need
to stack. Also [11] uses a combined acoustic representa-
tion at the output of both CR and synthesis systems while
we train independent systems for spectrum, fj and aperi-
odicity parameters.

3. RNN:s for SPSS

In this section we briefly review the RNN based SPSS
and the choice of our recurrent unit.

3.1. Elman RNN

An Elman RNN is a simple RNN with hidden-to-hidden
recurrent connections and can be formally described as
follows:

he = f(Wize + Whi—1 + bp) ey

ye = g(Uhs + bo) )

The forward propagation of Elman RNN unrolled
over time is shown in Fig. 1. W, represents the input to
hidden weights, W the recurrent weights of hidden layer
and by, the hidden biases, U the hidden to output weights
and b,, the biases of output neurons. f, g are the activation
functions at hidden and output layers respectively. Where
x, hy, y¢ are input, state and output at time ¢ respectively
and h;_; is the state at previous time instant ¢t — 1. In
our case, since it is a regression task output layer is kept
linear.

The parameters of the output layer can be learned us-
ing normal back-propagation, and other parameters of the
model are learned using back-propagation through time.
The recursion for computing the error signal at hidden
layer is given as [13]

et = yr —dy

6t = f/ * (WT(SIH,]_ + UTet)
e, 6 represent error signal at time t at output layer and
hidden layer respectively. However, this naive imple-

mentation can cause gradient explosion or vanishing phe-
nomenon.

3
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Figure 1: Elman RNN architecture.

3.2. Gated RNNs

Typically, the RNN is implemented using either long
short-term memory (LSTM) or gated-recurrent units as
RNN units [5] [6] [14], combinedly referred to as gated
RNNs (GRN), to avoid the vanishing gradients problem
[15]. However, there are two reasons for simple RNNs
to be chosen over GRN: (1) The number of parameters in
GRN are far more for a given hidden state size compared
to simple RNN. Also the number of computational steps
are much higher as the recurrent unit has more gates and
(2) it is not clear as to what components of the complex
architecture play a critical role.

Recently, in [16][17][18], experiments have been
conducted to determine what components are contribut-
ing most to the performance. Through experimental re-
sults on various datasets and task ranging in different do-
mains, it has been indicated that forget gate is the most
important of all the gates in [16]. In [17], an architec-
ture search was conducted to determine whether a better
architecture than standard LSTM can be found. Experi-
mental results concluded that with correct setting of for-
get gate bias the original LSTM formulation is uniformly
better across all the tasks considered in that paper. More
specifically, in the case of SPSS the relative importance
of gates has been studied in [14] and a simplified gated
recurrent unit optimal for SPSS has been proposed. How-
ever, whether gating at all is required or not has not been
studied so far in the literature.

Owing to the above cited reasons we prefer to use
simple RNNs. In [19], we have shown that simple RNNs
can be successfully trained for the task of SPSS using
sparse initialization technique. In this work, we use
a more advanced form of sparse initialization namely
“diagonal initialization” proposed in [20] for recurrent
weight matrix initialization.

4. Experiments

In this section we describe the database used and experi-
mental setup for building SPSS systems.
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4.1. Database

We use a subset of the Blizzard challenge 2015 database
for our experiments. The Blizzard challenge 2015
database contains about 4 hours of speech data in each
of three Indian languages (Hindi, Tamil and Telugu), and
about 2 hours of speech data in each of other three In-
dian languages (Marathi, Bengali and Malayalam), all
recorded by native professional speakers in high qual-
ity studio environments. We used Telugu and Hindi lan-
guage datasets for our experiments. The speech record-
ings released were sampled at 16kHz. Phone-level align-
ments were performed using the EHMM tool [21].

4.2. Experimental Setup

50 dimensional Mel-general cepstral (MGC) features and
26 dimensional band-aperiodicities (BAP) were extracted
with a frame-shift of 5 ms for all the speech utterances
along with their deltas and double-deltas. This feature ex-
traction is followed from HTS-STRAIGHT demo avail-
able online. During synthesis natural durations were
used.

We use DNN with conventional text features as our
baseline system. Note that since we train a DNN sepa-
rately for spectrum, fy and aperiodicity (i.e., DNN-MGC,
DNN-fy and DNN-BAP respectively) DNN below im-
plies the combination of these three DNN systems. For
RNN, the past context was removed and only the future
context was retained. Both the input and output features
were mean variance normalized. Fig. 2 shows the block
diagram for DNN/RNN based SPSS. The architectures of
DNN and RNN used are given in Table 1.

For DNNs we use normalized initialization [22], and
for RNNs we use the diagonal initialization proposed
in [20]. In diagonal initialization, the recurrent weight
matrices are initialized to scaled Identity matrices. This
gives the benefit of orthogonality as well as the ability
to set the spectral radius (i.e., the maximum eigen value)
for stability. The scale of the recurrent Identity weight
matrix was very important for learning and was set to
0.01 in all our experiments. Setting the scale to a lower
value will make RNN not memorize anything at all and
a higher scale will lead to explosion gradients or mem-
orizing more than necessary thereby leading to a poorer
local optimum. All the non-recurrent weight values were
drawn from random Gaussian distribution. All the non-
linearities used are rectified linear units (ReLLU) [23].

4.3. Proposed Method

The proposed method for synthesis is shown in Fig. 3.
Firstly we train an RNN as a CR system with conven-
tional text features as input and either spectrum or fy as
the output features. Then subsequently for training the
synthesis system, we append the conventional text fea-
tures with the hidden state from the trained RNN. The
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Figure 2: Block diagram of DNN/RNN based SPSS sys-
tem.
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Figure 3: Block diagram of DNN with RNN hidden state
as auxiliary context text features.

hidden state can either be from RNN-MGC or RNN- fj
or from both networks. The resulting DNN is trained for
predicting acoustic features stream-wise. In this study,
we have restricted to using RNN-MGC network as CR
network. Note here that CR networks are not used for
predicting BAP features. Instead, the aperiodicities pre-
dicted from the baseline DNN system were used during
synthesis. During the pilot experiments we found that
BAPs predicted from RNN or from a hybrid network did
not improve over using the BAPs from baseline DNN.

4.3.1. Normalization of Hidden State

The hidden state vectors were appended to the conven-
tional text features in two ways: (1) mean and variance
normalization was applied and (2) without any normal-
ization. This was done primarily to study the effect of
normalization on the appended features.

4.4. System Description

A brief description of systems trained is given below:

* DNN: Baseline system with conventional text fea-
tures (DNN-MGC,DNN- f;,DNN-BAP)

* RNN: RNN system trained for predicting spectral
features (RNN-MGC,RNN- fo,RNN-BAP)

* DNN-RNN-MGC-N: DNN trained with appending
hidden state of RNN-MGC network with hidden
state mean and variance normalized
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Table 1: DNN and RNN architectures. The ‘R’ below
indicates ReLU non-linearity.

Architecture # Layers
DNN-MGC 500R 500R 500R
DNN- fj 500R 100R
DNN-BAP 500R 500R
RNN-MGC 500R
RNN- fy 300R
RNN-BAP 300R
DNN-MGC/RNN 1000R500R
DNN- fo/RNN 1000R100R

* DNN-RNN-MGC: DNN trained with appending
hidden state of RNN-MGC network without hid-
den state mean and variance normalized

The code for replicating the experiments can be found

online !.

Table 2: Performance of Telugu SPSS systems in terms
of objective metrics.

System MCD fo vUuv BAP
(dB) | (RMSE) | (% error) | (dB)
DNN 4.36 33.93 6.8 23.84
RNN 4.39 33.32 6.67 26.57
DNN-RNN-MGC-N || 4.29 32.81 7.12 —
DNN-RNN-MGC 4.24 | 31.12 6.64 —

Table 3: Performance of Hindi SPSS systems in terms of
objective metrics.

System MCD fo vVUuv BAP
(dB) | (RMSE) | (% error) (dB)
DNN 4.11 17.12 8.04 20.27
RNN 4.11 16.85 7.9 23.14
DNN-RNN-MGC-N || 3.99 17.97 7.69 -

DNN-RNN-MGC 3.98 16.3 7.66 —

5. Results

In this section we describe the objective and subjective
evaluations of baseline and our proposed SPSS systems.

5.1. Objective Evaluation

The objective measures include Mel-cepstral distortion
(MCD) for spectrum, RMSE for fy, percentage error
in frames for voiced/unvoiced and euclidean distortion
for band-aperiodicity. In Tables 2 and 3 one can see
that RNN improves fy modeling over the baseline DNN.

Uhttps://github.com/Sivanand Achanta/SSW9
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Whilst, in case of spectral parameter prediction both
DNN and RNN perform equally well as can be seen from
the MCD scores. During the calculation of MCD scores
spectral enhancement using global variance was not ap-
plied but was done before subjective listening tests. How-
ever, MLPG smoothing was applied for all the parameter
tracks.

As for the effect of CR networks, we can see that
appending RNN-MGC hidden state improves all the ob-
jective measures for both the languages. However the
improvement for RNN-MGC is better when the hidden
state features are left un-normalized. This result is con-
trary to expectation, since we would expect the DNN to
optimize better if the input features are all normalized.
Fig. 4 shows the Mel-general cepstral trajectories of 2
through 5 coefficients as predicted from various systems
along with the natural trajectory. It can be seen that the
DNN-RNN-MGC system is able to better approximate
the natural contours especially at the phone-boundaries (
for instance approximately at 3.8 sec, 4 sec and 7.3 sec in
first panel in Fig. 4). The rnn-dnn in the legend (Fig. 4)
implies the DNN-RNN-MGC system.

5.2. Subjective Evaluation

We have conducted MUSHRA (MUltiple Stimuli with
Hidden Reference and Anchor) subjective listening tests
with 10 listeners for Telugu language. There is reference
speech file which is the natural speech signal and it is hid-
den amongst the test cases. In total, each subject had to
listen to 20 samples synthesized from the held out test set.
The listener had to rate how natural sounding the test sys-
tem is with respect to the reference. The scale was from 0
to 100 (0 implying very unnatural and 100 for highly nat-
ural synthesis). The subject was asked to give maximum
rating to atleast one of the 5 test wavefiles which sounded
closest to the reference file.

Fig. 5 shows the mean opinion scores (MOS) of var-
ious systems. The results clearly indicate that the sub-
jects prefer the DNN-RNN-MGC system the most for
Telugu. From the informal listening tests, we found that
the sounds in general and consonantal clusters like tra
in particular, were more clearly intelligible when using
the additional context from the CR networks. This could
have contributed to the preference of the proposed sys-
tems. We could not conduct the subjective listening tests
for Hindi and hence only objective results are given.

Samples can be heard online 2.

6. Conclusions

In this paper, we have proposed to use the RNN hidden
state as the contextual feature for improving the DNN
based synthesis. The proposed method was tested on a
dataset consisting of 2 Indian languages from Blizzard

Zhttp://goo.gl/7T11Nwo



9th ISCA Speech Synthesis Workshop e September 13 — 15, 2016 e Sunnyvale, CA, USA

2nd mel— general cepstral trajectory

PIES

amplitude
o .M
{ T

,‘ I ( ‘\“7‘ A |
\t{\/“ r' “Lf\ il
\Ju i)

N AV N
ALY

5

3rd mel- general cepstral lrajectory

UL RS R

h

»

T ,
AW \/'\»‘yvmwm J My ,-w,/‘f*\n ) (,»‘.‘{ r'Al!"‘“\yﬂf‘wﬁ" =

‘: r\a‘ ‘m /\ 4th mel—ge’neral cepstral trajectory‘ : h —
A e, U e
“‘ 05— ‘ Mﬂr‘ W L‘ “\/ u ll \ f V \ \”{“’M | ‘D/‘\J o ‘/ “

5th mel-general cepstral trajectory

amplitude
°
&

| / h J‘N\pww V MM\'L | ‘\N’\f‘ "V“‘\WN.,_. d‘u\”f \W"‘\J v\\&‘ /\ )YNJ\’ Ww\,“\u&yri

2 3

time (sec)

Figure 4: Mel-general cepstral trajectories of 2nd, 3rd, 4th and 5th coefficients from various systems (Best viewed in

color).
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Figure 5: Subjective listening test results for Telugu.

challenge 2015 data. It is clear from both subjective
listening test and objective scores that adding the con-
textual features substantially improves over the baseline.
From the informal subjective listening tests the improve-

ments seem to come from better intelligibility of difficult
sounds which is quite encouraging for pursuing this line
of thought further.

7. Future Work

Training an RNN using multi-lingual data for contextual
feature extraction is one direction. Also, in this work we
have limited to using uni-directional RNN however tak-
ing future context may also prove to be helpful in predict-
ing spectrum and fj and hence Bi-RNNs have to be ex-
plored. While this work was limited to using CR network
trained on MGCs alone, the effect of appending features
from a CR network trained on fj needs to be studied. An
exploration of training the CR network with combined
acoustic features will also be carried out. The synthesis
network can also be another RNN instead of DNN as used
in this work. We also plan to conduct extensive listening
tests for all Telugu as well as Hindi.
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